Chronic Allergic Inflammation Causes Vascular Remodeling and Pulmonary Hypertension in Bmpr2 Hypomorph and Wild-Type Mice
نویسندگان
چکیده
Loss-of-function mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene have been identified in patients with heritable pulmonary arterial hypertension (PAH); however, disease penetrance is low, suggesting additional factors play a role. Inflammation is associated with PAH and vascular remodeling, but whether allergic inflammation triggers vascular remodeling in individuals with BMPR2 mutations is unknown. Our goal was to determine if chronic allergic inflammation would induce more severe vascular remodeling and PAH in mice with reduced BMPR-II signaling. Groups of Bmpr2 hypomorph and wild-type (WT) Balb/c/Byj mice were exposed to house dust mite (HDM) allergen, intranasally for 7 or 20 weeks to generate a model of chronic inflammation. HDM exposure induced similar inflammatory cell counts in all groups compared to controls. Muscularization of pulmonary arterioles and arterial wall thickness were increased after 7 weeks HDM, more severe at 20 weeks, but similar in both groups. Right ventricular systolic pressure (RVSP) was measured by direct cardiac catheterization to assess PAH. RVSP was similarly increased in both HDM exposed groups after 20 weeks compared to controls, but not after 7 weeks. Airway hyperreactivity (AHR) to methacholine was also assessed and interestingly, at 20 weeks, was more severe in HDM exposed Bmpr2 hypomorph mice versus WT. We conclude that chronic allergic inflammation caused PAH and while the severity was mild and similar between WT and Bmpr2 hypomorph mice, AHR was enhanced with reduced BMPR-II signaling. These data suggest that vascular remodeling and PAH resulting from chronic allergic inflammation occurs independently of BMPR-II pathway alterations.
منابع مشابه
Increased susceptibility to hypoxic pulmonary hypertension in Bmpr2 mutant mice is associated with endothelial dysfunction in the pulmonary vasculature.
Patients with familial pulmonary arterial hypertension inherit heterozygous mutations of the type 2 bone morphogenetic protein (BMP) receptor BMPR2. To explore the cellular mechanisms of this disease, we evaluated the pulmonary vascular responses to chronic hypoxia in mice carrying heterozygous hypomorphic Bmpr2 mutations (Bmpr2 delta Ex2/+). These mice develop more severe pulmonary hypertensio...
متن کاملIncreased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice.
BACKGROUND Bone morphogenetic protein receptor-2 (BMPR2)-heterozygous, mutant (BMPR2(+/-)) mice have a genetic trait similar to that of certain patients with idiopathic pulmonary arterial hypertension (IPAH). To understand the role of BMPR2 in the development of IPAH, we examined the phenotype of BMPR2(+/-) mice and their response to inflammatory stress. METHODS AND RESULTS BMPR2(+/-) mice we...
متن کاملInflammation, endothelial injury, and persistent pulmonary hypertension in heterozygous BMPR2-mutant mice.
Heterozygous bone morphogenetic protein receptor-II-knockout (BMPR2(+/-)) mice have a similar genetic trait like that in some idiopathic pulmonary arterial hypertension patients. To examine the effect of pulmonary endothelial injury in BMPR2(+/-) mice, we challenged the mice with two injections of monocrotaline combined with intratracheal instillation of replication-deficient adenovirus express...
متن کاملSerotonin increases susceptibility to pulmonary hypertension in BMPR2-deficient mice.
Heterozygous germline mutations in the gene encoding the bone morphogenetic protein type II (BMPR-II) receptor underlie the majority (>70%) of cases of familial pulmonary arterial hypertension (FPAH), and dysfunction of BMP signaling has been implicated in other forms of PAH. The reduced disease gene penetrance in FPAH indicates that other genetic and/or environmental factors may also be requir...
متن کاملmiR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling.
Chronic hypoxia causes pulmonary vascular remodeling leading to pulmonary hypertension (PH) and right ventricle (RV) hypertrophy. Aberrant expression of microRNA (miRNA) is closely associated with a number of pathophysiologic processes. However, the role of miRNAs in chronic hypoxia-induced pulmonary vascular remodeling and PH has not been well characterized. In this study, we found increased e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012